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The authors consider Gauss—Christoffel formulas with preassigned node 0 for
evaluating Cauchy singular integrals with an even generalized smooth Jacobi
weight. A convergence theorem is given, and some asymptotic estimates of the
remainder are established.  © 1987 Academic Press. Inc.

1. INTRODUCTION

Let @(f; t) be a Cauchy principal-value (V.P.) integral of the function f,
namley,
1
o(f: z)=3f I ) dx
x—1

=lim+{j16+£l+e}[(i)[w(x)dx, <1, (L)

e —0 I X —
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where
(i) feTD:={feCD)/fyu"'o(fiu)du<oo}. Here I=[-1,1]
and w(f; ) is the modulus of continuity of f in /;

(i) wix) =y ()1 =XV p> =L Y(x)=y(—x), 0<y e TD, 1/ is
(Lebesgue) integrable on 1.

It is well known that (i) and (ii) imply the existence and continuity of
@(f: 1) moreover [2]:

w(Pf, 8y = O0(w(f; d)) (6 —»0).

In order to approximate @f, we construct a Gauss—Christoffel type for-
mula @,,, with a fixed node at 0 of a given multiplicity 2s. This formula is a
generalization of those contained in [11, 6].

The principal aim of this work is to examine the convergence of the
sequence {@®,, f} under the assumption that the function fe TD has
derivatives of whatever order will be needed at 0. We prove there is a sub-
sequence {®,,, f} that converges uniformly to @f on some closed subset of
(—1,1)— {0}. However, there exist also divergent subsequences {®,,, f}.
Consequently, one concludes that when the function f is not sufficiently
smooth, this type of quadrature formula is unsuitable for applications.

We also prove that if we omit in ¢,,, f a term corresponding to a node
nearest to the singularity, then we obtain a quadrature formula @%,
(me N) that converges uniformly on a closed subset of (—1,1)— {0} to
@f, under the previous assumptions on fe TD.

Morcover, we determine some asymptotic estimates of the remainders
corresponding to the formulas &,,, and &%,,.

2. A GAauss—CHRISTOFFEL TYPE FORMULA FOR THE EVALUATION
OF PRINCIPAL VALUE INTEGRAL

Let
v(x) = x¥w(x) (2.1)

where se N and w is defined by (ii).

Moreover, let {p,} be the sequence of the orthogonal polynomials in /
associated with the weight fuction v defined by (2.1). Then, we denote the
zeros of p,(x) by x,,=x,(v) (i=1,2,.,n), and the corresponding
Christoffel numbers by 4,,=4,/(v) (i=1,2,.,n). The function v is a
“generalized smooth Jacobi” weight (ve GSJ), and the properties of the
orthogonal polynomials p, haxe been extensively studied by Stancu [13],
Rothmann [12], Badkov [1] and Nevai [9].

Now, we consider the Gauss—Christoffel quadrature formula with respect
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to the weight function w with the fixed knot 0, given with its order of mul-
tiplicity 2s [13]

2m

GZm Z A"mlg(\ZmI + Z 37,717,glzl (O) (22)

i J=0
where x,,, ;= x,,, {v) (i=1, 2,..., 2m), and

/:~2m.i(u)

" x%:n i( v ) '

(i=1,2,...2m), (2.3)
B"Nm 2; T - Jﬂ ﬁ’m 7/ H Y) dY (/ = O’ 19'"a S 1 )»

e s=i 2k 1 (2K)
g.’!m.2/’(x‘ 2m : |:_*:| 5
Fona ) =mpanl®) X | 5 |

and where the function g 1s defined on /. As the weight function v is even,
we have

(24)

'\‘Zm.i = "\‘Zm,Zm i+ 1 (l = 1’ 2»'"’ m)»

AZHLI:AZM.ZIN i+ 1 (I: 15 25"'7 'n)'

Let R,,.(g) be the remainder that is defined by
ol

| 800 wlx) dy =Gl £) + Ravl ) (2.5)

It is well known that the quadrature formula (2.2) has degree of exactness
4m+2s— 1.

Now, we may construct a Gauss—Christoffel quadrature formula for the
approximate evaluation of @f by the formula (2.2). In order to
approximate the integral @f, we write

(f1)= z)]f wix) Jf () dx. (2.6)

Hence, by (2.5) we have
ot =10 vt 6o (L) w py, (EL) )

1 X—1 — 1

1

where e,(x)=x* (ke N), and we have assumed that ##0. Then (2.7) can
be rewritten in the following form

DS, 1) = Dol fs 1)+ Esl £ 1), (2.8)
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where we assume

_ t)
Elm(ﬁ t)zRZm <f f( )9 (29)
e, —1
w(x S (X2} = f(1)
D, (fit) ——d + A,,, ————
2 (f J£ ’gl 2m,i X, -"t
B 2s — ZB
Famell) gy " Bl i (2.10)
Jj=0
By oty =B3, 5
(2.11)
Buns()= B3+ (4 122231 0)
where B;, . ., =0. Moreover, by
U ow(x) Z Aspi  Brgolt) 1
d _ B 5 — .
Jtlx—r o ,;xzm,f—’+ t Rz’"(q—t)' Aan(1),
(2.10) becomes
2s—2
ml Bm
Donl )= Aanl ) F(0 4 Y 2 fr, )= 5 Bl o) )
i=1""2mi i=0

We have established (2.12) under the assumption that ¢ # 0; however, by
an easy limit calculus, we may have the following quadrature formula

m

Ao,
(x) dx = @y, (f,0)= 3 — [ f(Xp0) —f (= X3;)]

i=1 2m,i

J[ f(x

s 1

BZmZJ 2i+1
+ 7+ D0 2.13
]ZO 51/ (2.13)

We note that formulas (2.12) and (2.13) have degree of exactness 4m + 2s,
but (2.12) depends on m + 2s coefficients, whereas only m + s coefficients
are in (2.13); furthermore, the calculation of these is easier.

Finally, we observe that in the special case in which w=1 and s =1, the
formula (2.13) becomes the formula given by Hunter in [6], and for w=1
and s =0, we obtain the Piessen’s formula [11].

Now, we want examine the convergence of the formulas that we have
introduced. It is clear that the convergence of the formula (2.13) follows
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easily; in fact, the function f has a derivative at point 0 and so the function
(f(x))/x is Riemann-integrable. Therefore, we shall attend to the con-
vergence of the quadrature formula (2.10).

3. NOTATIONS AND BASIC LEMMAS

The symbol “const” stands for some positive constant taking a different
value each time it is used. If 4 and B are two expressions depending on
some variables, then we write

A~B if |AB '| <const and {4 'B| < const

uniformly for the variables under consideration. Throughout this paper,
C (I) denotes the class of the continuous functions on I with 2s—2
derivatives at point 0, and A denotes a closed set such that Ac
(-1, 1)—{0}.

As mentioned above, v is a generalized smooth Jacobi weight function;
the properties of the corresponding orthogonal polynomials and of the
Christoffel numbers are well known [1, 9].

From among these, we recall the important relations

O — Oy~ (2m) 1, (i=1,2,..,2m—1), (3.1)
where x,,,;=cos 0., (i=1, 2,.., 2m) are the zeros of p,,,, so ordered
1 <X <X < " < Xopom < 1,
(see [9, Theorem 9.22, p. 166]), and

;'erx.i(v) ~ (2m) 1(1 - x%m,f)uJr 1/’2(|x2m,i| + (2m)7 ! )23’ (l: 19 25"'» m)

(See [9, Theorem 6.3.28, p. 120].)
Then, we set: N* = {me N/x,,,,#t,i=1,2,.,2m}, and x,,,, denotes the
closest knot to t; more precisely

|t —_ x2m‘(.| = mln{t_ me‘d, “Y2m.d+] - l},
where: x,,, , <1< X3, 44 1. (0<d<2m). It is obvious that
N~ ={meN*/t = X3y~ Xopmas 1 — 1} S N¥,

and both sets are infinite [3].
At this point we prove the following lemmas, we need later for the main
theorem.
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LemMA 3.1.  The inequalities

)'Zm,i < AZm.i C

|x2m.i‘—t| |x2m‘i——t| (1—-t2)

{@m) g — 117+ (1= x3,,) )

(i=1,2,.., 2m), (3.3)
hold for some constant C >0 independent of m.

Proof. By (2.3) and (2.4), we have

1 2s
A 2mi /A“Zm.lxzml; ~ (2m) B ]( 1— x%m i)u 2 < 1 +— )
' ’ ’ 2m |x2m,i|
(i=1,2,.,2m).
Moreover, as the weight function ve GSJ is even, and by (3.1), we obtain

1 < 1
x
2m |x2m,i| 2m l-xzm,m[

~ 1’ (l: 1, 2,-.., 2m).
Thus
‘42171.1'<(:()r15t (2m) B 1(1 _X%m‘,‘)illz, (l= 1, geeny 2m),

from which the second inequality in (3.3) easily follows, and also first
inequality, from
‘/42m.ig )“Zln_i’ (l= 1, 2,~-., 2m). l

Lemma 3.11.  Let x,,, . be the closest knot to t. If we set

or(1) = if _Aomi_ (3.4)
' 2 X — ]
i
then
ok(ty~logm, (meN), (3.95)
holds uniformly on A.
Proof. Without any loss of generality, we suppose that
Xopre = Xy SE< X0y 4y thus 1 —x,,, | ~Xsp e —t~(2m)
Then, by (3.3), we have
I ds omi I Ao
ok(t)> ’; P [; t_x2m1 , gﬂm. (3.6)

i*d
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Further, the function u(x)=|x —¢ ' is such that

u'(x)>0, xel[—-1Lxyu 11 i=0,1,..
and
(*1)' M“}(.Y)>O’ ~\—e['\’2m.d+l’ 1]‘ 120’ 1’

Then, by the generalized Markov-Stieltjes inequalities (see Lemma [.5.3 in
[5, p.30] and Lemmas 3.2, 3.3 in [8, p. 222]), we obtain

d | 3
Ay Xomd -1 D(X)
Z 2 > [ dX,
P 11— 'YZIH.I vl I—X
2m M -
/‘Zm.f ! l‘('\)
Y ——= dx.
iodi ) X 2mi { Y Xomd oL xX—1

From these inequalities, we easily get
a¥(ty> 2ve(t) log m+ v(1r) log(l — 1*) + V(1),

where
v(x)—ov{t)

X—1

dx.

1

From ve TD, we have that the function V is continuous on A, and thus

o¥(t)>ualogm+b, (Vre A),

where a,, b, are two constants, independent of m.
Further, by (3.3) we obtain

const [ 2 I 1
agh(t) < [ Y + 3 .
1 _[2 i=1 2m |x2n1‘i_” i=1 2m\/ 1 ’xgm"-
I# ¢

By (3.1), we represent the two summations in the last inequality as
Riemann -Darboux ones. Thus

* const Cmd -1 dx 1 dx
0m t) < 5 J + J‘ + 7Tl
11— -1 r—x c—

IR

Again, by (3.1) and re A, we have
oX(t)<a,logm+b,,

where a,, b, are two constants, independent of m.
Hence the lemma is proved. |I



CONVERGENCE OF GAUSS—CHRISTOFFEL FORMULA 333

Lemma 3111 For the coefficients B3, ., in (2.2) the inequalities
K
|B?Jn.2r| SW’ (r:O) 1""35_ 1)5 (3‘7)

hold, where K is a constant, independent of m and r.

Proof. 1f one set g(x)=x¥ (r=0,1,.,5— 1) in (2.5), we obtain
! 7, o '12m‘i
B?m 2r = (2 )' J - H"(X) dx — :L:‘ X%L;T ry’

Now, the function y(x)=x>""*(r <s) is such that

w(x) >0, x <0, i=0,1,.,
(— 1)y (x)>0, x>0, i=0,1,..,
and
v(x) y(x) = x¥w(x).

Then, by the generalized Markov-Stieltjes inequalities (see [8, p. 222])
have

m -1

;17171: Yamm “ /2m1
<< ’ <
Z x’(\rn\f X¥w(x) dx Z P26y
i=1 2m.i - i=1"2mi

2m

/ v2md ! 2r.., < o ;th,i
Z 7(\—r)< xTw(x) dx < Z 25— 1)
I'm+7x"ml i=m+ 17" 2mi

X2 4 |

From these inequalities, we deduce

mAﬁm S Bz~m,2r S Xns

where
1 Sl o
o, =m . x“w(x)dx,
and
ﬂm: 2 /12mm+l.
!X,
Thus

|B;m,2r| Smax{am’ BM}



334 CRISCUOLO AND MASTROIANNI

Further, we have

N - L \,2,- bl I |
(2r)la,, =w() J N dx = (&) TRt L T aman
e 2r+1
2 2
- 2(1)(5) x;;:m‘+ 1 ~m ! )

where € (X4, ., Xopmm o 1) Moreover, by (3.2), we see

1 25
~ | 2 e+ 172 2r —s)
(2r)' ﬁm m (1 xlm.m +1 ) (xzﬂhm +1 + zm x.’ln:,m\wL !

1 2r
. i e e+ 12 " —
=m ( l — X S+ 1 ) ('\lm.m + 1 + >

2m
1 2y 2r
2(r - %)
X <x2m.m + 1 + 2]’}’1) xZ»un +1
1

3y 2y - 2r
_ 1 2 ot b2 - _—
=m (1 ‘.\'-;,”,,,+1} (-\Nnerl + I+
2m, 2. 2m 2mx,
N2mom + 1

2r 1

~m

Hence, the lemma is proved. |

Before proceeding any further, we observe that the result of Lemma 3.111
is sufficient to prove the convergence of the formula (2.2) when ge C°(1)
and we suppose the existence of 2s— 1 derivatives of the function g at
point 0.

Now, we note that the functions B,,,,(¢) depend on B3, by (2.11). From
these relations, the equalities

s f B* 5;
2(21'+2i—2)!—2"'7~§+:t—;—2, (j=0,1.,s—1),

BZI;Ll/’([) = (T])' =

¥

jo1 B Y
Y20 A (=0, L s = 2)

i=1

|
Bzm_z,+1(f):m

easily follow.
Thus, by (3.7) we deduce

BZm,/(t) K
< . i1
t Jtm?

(j=0, 1,.., 25— 2), (3.8)

where K> 0 is a constant, independent on m, j, and € A.
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4. ON THE CONVERGENCE OF RULE (2.10)

We set
2.\—2f(k)(0) )
PZ.\'*Z(X)Z Z ’ k' xl\v
k=0 :
g :/_ PZ.\' - 23
Frmi=8 =4

where ¢,, is the best approximation polynomial with respect to the function
g. We remark that w(g; d) < const w(f;d) when fe C°(1).
Under these assumptions, we may prove the following.

LemMmA 4.1.  Given any function fe C (I), there is a constant L indepen-
dent on [ and me N such that

(Ea ([ S Lo, + lay, A1), te4, (4.1)
where
FolXop o) —r,, 1
aZ/n,('([) =A4,,,. _’.’L(__M’ (meN*),
Xopre ™ [
1o v 4
6/»1: ||r,,,|| (Iogm+m l)+J (1)(/» u)du—i— qu”/l

0 U m

2y 2 (W2) 0

+m 'y 14,°(0) (me N),

—,
= tm

and A is a closed set such that A =(—1,1).

Proof. Having rule @,,, degree of exactness 4m + 2s, we may claim that

|E2m(ﬁ t)| Sll +12+13’

where
]1 = ’(D(rm_rm(t); t)l, (42)
< rm(XZm i) - rm(’)
I" = A md - ’ 4
) 1;1 o Xopi — 1 ( 3)
B t 25-2 B ! »
n=| 2 - ron+ T 2= g0 sa

! R
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Now. we obtain

L2 fr I W) +win)

i YV — (1
x {4 11,0l log m+}| Ll ) }
“lxooo = Vi X—1

where

! xX)—w(s

W(r):[ w(x)—w(t) v

| X—1

By

‘ Jﬂ rm(x) - rln(,) d\’
vl L

Lim ) ‘ H
<constf o(fiu)u ‘du+”—qm—A.
X—1 m

0

as we TD implies We C°(A), we obtain

<0

Lim /
I, < const {Hr,,,\ (logm+ 1)+ [ w(fiuyu ! du+M—A-}.
m
Furthermore, because of Lemma 3.11,
12 < const HrmH log m+ ‘aZnu-([)'-
Finally, by (3.8), we have
Zq”’(m}

2y
I,<Km "2 |r,, I + LAY
3 { Il /; Iy

The combination of these inequalities proves the lemma. |

At this point, we may prove the following

THEOREM 4.1.  For any function fe C (1)~ TD, there exists a subsequence
(@, tie v uniformly convergent to ®f on A.

Proof. First we remark that from fe C (I)n TD follows

7]l <const w(f;m™"),

1/im
nmj o(fru)u ' du=0,

meN Yo
and

lim w(fim 'Ylogm=0.

meN
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Furthermore, it is well known [7] that for any function Fe C"'(I), (r > 0),
if we denote by g¢,, the best approximation polynomial with respect to the
function F, for any k > r there exists a constant M, such that

lgs Il < Mem* =" o(F7;m— 1), (4.5)

where 4 is a closed set such that A< (—1, 1)
Thus, from ge C°(/), we obtain

252 | U0
m g+ Y M <constw(fim™").
=t

Finally, we have

lim 8, = 0.

menN

At this point, we introduce the set N'= {ne N*/|x,, —t|~n 'log ' n}.
By N~ « N'c N*, we obtain that N’ is an infinite set and N' = {m, },c ~-
Then, for any sufficiently large ke N, there exists a constant H >0,
independent of f and & such that

HaZInA‘( H < Hw(/; rn/\— I) IOg ,nk = 0(1 )9 (k — 0 )a

and the theorem is proved. |

Now, let LD(4), (4>0), be the class of functions fe C°I), such that
w(f:d)log* s '=o(1), (6 >0"). Obviously, we have

LD(A)>TD if 4e(0,1],
and

LD(A)=TD if i> 1.

Note that by Lemma 4.1 and Theorem 4.1 the corollaries immediately
follows:

COROLLARY 4.1.  For any function fe LD(4), (A> 1), there exists a sul;
sequence {E., [ ..y such that

I1Es, [l =ollog”™'m;),  (i— o).

CoroLLARY 4.11.  For any function fe€ Lip o, there exists a subsequence
{EZIH/f}/EN such that

[Esy, [l = O(m;*logm)),  (j— ).
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CorOLLARY 4.111.  For any function f€ Lip,, 1, we have
|E,, fll =O(n 'logn), (ne N*).
COROLLARY 41V. For any function fe C*(I), we have
IEs [l =0 “logna(fin 1)), (neN*).

Furthermore, we observe that obvious changes in the proof of
Theorem 4.1 are sufficient to prove the following:

THEOREM 4.11. If the integral &f exists, then, for any function
fe C(I)n LD(1), there exists a subsequence {®,, f }; . convergent to ®f in

ny;

At this point, we remark that by Lemma 3.II the norm of @, is not
bounded; then the continuity of the function f is not sufficient for the con-
vergence of the sequence {®,,}, which besides is defined just for
me N* < N. Yet, in some cases we have N~ = N*. This is true when s =0,
Y(x)=1, u= 41, and r=cos(np/q), where p/g is a rational number in
(0, 1), [8].

Further, it is not difficult to find a subsequence {®,, }..y nOt con-
vergent when the function fe Lip,,a, (2 < 1). In fact, following the example
s=0, Y(x)=1, p= 11, if we suppose ¢ =cos(fn), where 8 is an irrational
number in (0, 1), we have |a,, |~ (2m,)'* for a particular sequence
{m,},.nc N* (see [10, p. 23]).

From the proof of Theorem 4.1, we have that the term that causes dif-
ficulties to the convergence of @,,, f'is a,,, (1), corresponding to the closest
knot to the singularity. Now, let us omit this term and consider the
quadrature formula

w(x) S (X2mi) =S (1)

i
PLfin =[] —dx +’§1 e
+ BzmILO(t)f(t) _ 2_?: BZm/ f(/) (4.6)
J=
that can be rewritten in the following form
LN = A1)+ T 2 fix,,)— § 22l a7)

i=1 2ml_ j=0
i#c

where
T ow(x) & Ay Bolr)
* — 7 _ i
Apln=f Todx—y T 200

i=1 x2m,i—z t
i#c
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Then, the corresponding remainder is defined by
E3 (fi)=@(fi1)— D%, (f 1)
One can easily prove that @%, has degree of exactness 0, however we may
consider &%, for any me N, and we may prove the following:
THeOREM 4.111.  For any function feC(I)nTD, the sequence
{D%, [} e n converges uniformly to @f on A.

Proof. Proceeding as in [4], we obtain

' Xome) = Gmlt
£ 1) = B (1,0 )+ Ay, L2 Z80l1)

Xopoe— 1

and recalling (3.4), (4.2), (4.4), we have
|ES (LOI<Di+20r, 0,00+ 13+ A3, g0 4.
At this point, if we proceed as for the proof of Theorem 4.1, we may obtain
IE%, f14<C@,+o(fim™)), (4.8)

where C is a constant, independent on f and m.
This completes the proof of the theorem. |

Furthermore, by (4.8) we obtain
|E%, /Il = o(log” 'm) if feLD(x), (A>1). (4.9)
NE%, flla=O0(m *logm) if feLipya, O<a<l) (4.10)
On the other side, we have the following:
THEOREM 4.1V. If the integral ®f exists, then for any function
fe C ()= LD(1), the sequence {®%, [} converges to ®f in (—1,1)— {0}:

Further, we point out that Theorem 4.III, Theorem 4.1V and the
relations (4.9), (4.10) also hold for the quadrature formula @3* that we
may obtain from ¢&,,, omitting the two terms that correspond to both
knots x,,,, and x,,, ., ;.

Finally, note that in the special case in which s=0, we obtain results
established in [4].
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