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The authors consider Gauss-Christoffel formulas with preassigned node 0 for
evaluating Cauchy singular integrals with an even generalized smooth Jacobi
weight. A convergence theorem is given, and some asymptotic estimates of the
remainder are established. 1987 Academic Press. Inc.

1. INTRODUCTION

Let cP(f; t) be a Cauchy principal-value (V.P.) integral of the function/;
namley,

fl !(x)
cP(f; t) = - w(x) dx

-I x- t

. {II-r II }((x)= hm + + '-- w(x) dx,
<-OJ I+CX-t

It I < 1, (1.1 )
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where

(i) fETD:={fEC°(/)/Sbu-1W(j;u)du<oo}. Here 1=[-l,lJ
and w(j; ) is the modulus of continuity of f in I;

(ii) w(x):= t/J(x)(l - x 2 )!'; J1 > -1, t/J(x) = t/J( -x), 0::;; t/J E TD, IN is
(Lebesgue) integrable on I.

It is well known that (i) and (ii) imply the existence and continuity of
cP(.f; t) moreover [2]:

w(cPf; b) = O(w(j; b)) (15 ~ 0).

In order to approximate cPj, we construct a Gauss-Christoffel type for
mula cP 2m with a fixed node at 0 of a given multiplicity 2s. This formula is a
generalization of those contained in [11, 6].

The principal aim of this work is to examine the convergence of the
sequence {cP 2ml} under the assumption that the function IE TD has
derivatives of whatever order will be needed at O. We prove there is a sub
sequence {cP 2mJ} that converges uniformly to cPlon some closed subset of
(-1,1)- {O}. However, there exist also divergent subsequences {cP 2mJ}.
Consequently, one concludes that when the function I is not sufficiently
smooth, this type of quadrature formula is unsuitable for applications.

We also prove that if we omit in rP2ml a term corresponding to a node
nearest to the singularity, then we obtain a quadrature formula cP!ml
(m E N) that converges uniformly on a closed subset of (-1, 1) - {O} to
cPj, under the previous assumptions on IE TD.

Moreover, we determine some asymptotic estimates of the remainders
corresponding to the formulas cP 2m and cP!m.

2. A GAUSS-CHRISTOFFEL TYPE FORMULA FOR THE EVALUATION

OF PRINCIPAL VALUE INTEGRAL

Let
(2.1 )

where SEN and w is defined by (ii).
Moreover, let {Pn} be the sequence of the orthogonal polynomials in 1

associated with the weight fuction v defined by (2.1). Then, we denote the
zeros of Pn(x) by xnJ=xn,,(v) (i= 1, 2, ..., n), and the corresponding
Christoffel numbers by An,i=An,i(V) (i= 1, 2, ..., n). The function v is a
"generalized smooth Jacobi" weight (v E GSJ), and the properties of the
orthogonal polynomials Pn haJr'e been extensively studied by Stancu [13 J,
Rothmann [12J, Badkov [lJ and Nevai [9].

Now, we consider the Gauss-Christoffel quadrature formula with respect

640/50/4-J
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to the weight function w with the fixed knot 0, given with its order of mul
tiplicity 2s [13 ]

2.111 S I

G2m(g) = 2.: A 2m"g(X 2nl,l) + I B2;n,2,l2 j l(0) (2.2)
i 1 1-0

where X2m,i=X 2nl,l(v) (i= I, 2, ... , 2m), and

(i = I, 2, ..., 2m), (2.3)

X21
S-I X2k L 1 JI2kl

fJ2m2;(X)=(2,),P2m(X) I (2k)I -(-) .' '
I . k ~ 0 . P2m X ,~O

-I

B2;n.21 = j 1 f32m.2/(x) w(x) dx, (j = 0, I, ..., S - 1),

(2.4)

and where the function g is defined on 1. As the weight function v is even,
we have

X 2m_i == - X 2m.2m i +- I ,

A 2m,; == A 2111.2m i + I '

(i=1,2, ,m),

(i=1,2, ,m).

Let R 2m(g) be the remainder that is defined by

-I

j 1 g(x) W(X) dx = G2m(g) + R 2m (g) (2.5)

It is well known that the quadrature formula (2.2) has degree of exactness
4m + 2s - 1.

Now, we may construct a Gauss-Christoffel quadrature formula for the
approximate evaluation of cpf by the formula (2.2). In order to
approximate the integral cPf, we write

CPU; I) =f(/)r w(x) dx +r f(x) - f(/) w(x) dx. (2.6)
-Ix-I I x-I

Hence, by (2.5) we have

cpU; I) = f(/) fl w(x) dx + G2m (f-f(/)) + R 2m (f - f(/)), (2.7)
-IX-I el-I el-I

where ek(x)=xk (kEN), and we have assumed that 1#0. Then (2.7) can
be rewritten in the followingform

(2.8)



CONVERGENCE OF GAUSS-CHRISTOFFEL FORMULA

where we assume

B (f) 2,.- 2 B .(f)+ 2m,O j(f) - L 2mJ jU)(O),
f j~ 0 f

329

(2.9)

(2.10)

B .(f)=B-+( '+1)B2mJ + 1(f)
2m,! 2mJ J f

where B:;;",2i+ 1= O. Moreover, by

(j = 2s - 3,..., 1,0),
(2.11 )

(2.10) becomes

w 2m Cf; f) = A 2m(t)j(f) + i~l X~~i~ /(x2m,,) - :~02 B
2m
/f) jU)(O). (2.12)

We have established (2.12) under the assumption that f of 0; however, by
an easy limit calculus, we may have the following quadrature formula

(I j(x) ~ A 2miJ -w(X)dX~w2m(f;0)= L. -' [f(x 2m,i)-j(-x2m,;)]
- I X i~ I X 2m,i

(2.13 )

We note that formulas (2.12) and (2.13) have degree of exactness 4m + 2s,
but (2.12) depends on m + 2s coefficients, whereas only m + s coefficients
are in (2,13); furthermore, the calculation of these is easier.

Finally, we observe that in the special case in which w,= I and s = 1, the
formula (2.13) becomes the formula given by Hunter in [6], and for w,= 1
and s = 0, we obtain the Piessen's formula [11].

Now, we want examine the convergence of the formulas that we have
introduced, It is clear that the convergence of the formula (2.13) follows
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easily; in fact, the function f has a derivative at point 0 and so the function
(f(x) )/x is Riemann-integrable. Therefore, we shall attend to the con
vergence of the quadrature formula (2.10).

3. NOTATIONS AND BASIC LEMMAS

The symbol "const" stands for some positive constant taking a different
value each time it is used. If A and B are two expressions depending on
some variables, then we write

A~B if lAB 11 ::; const and IA 1BI ::; const

uniformly for the variables under consideration. Throughout this paper,
C,(I) denotes the class of the continuous functions on I with 2s - 2
derivatives at point 0, and A denotes a closed set such that A c

(-I,I)-{O}.
As mentioned above, v is a generalized smooth Jacobi weight function;

the properties of the corresponding orthogonal polynomials and of the
Christoffel numbers are well known [1,9].

From among these, we recall the important relations

82m.i- (}2m.i+ 1 ~ (2m) 1, (i= 1, 2, ... , 2m-I), (3.1 )

where x 2m.i = cos (} 2m.i (i = 1, 2, ... , 2m) are the zeros of P2m, so ordered

-1 < X2m.l < X 2m.2 < '" < x 2m.2m < I,

(see [9, Theorem 9.22, p. 166]), and

(i= 1,2,... , m).

(3.2)

(See [9, Theorem 6.3.28, p. 120].)
Then, we set: N* = {m E N/X 2m. i #- t, i = I, 2,..., 2m}, and X2m.c denotes the

closest knot to t; more precisely

It - x 2m.c l= min{ t- X 2m•d ' X2m.d+ J - t},

where: X 2m.d ::; t::; X 2m•d + I' (0::; d::; 2m). It is obvious that

N - = {m E N* / t - X 2m.d ~ X 2m.d + J - t} £;; N*,

and both sets are infinite [3].
At this point we prove the following lemmas, we need later for the main

theorem.
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LEMMA 3.1. The inequalities
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)-2m) < A 2m,i < C {(2m)-1\x-tl- I +(1-x2 .)-1/2}

I I I (1 2) • 2m,1 2m,1X2m)-t IX2m)-t -t

U= 1,2,.." 2m), (3,3)

hold for some constant C> 0 independent of m.

Prool By (2,3) and (2.4), we have

(
1 )2S_ - 2,,- I 2 I' + 1/2

A 2/1/) - )-2nI.l X2m,i ~ (2m) (1 - x 2mJ 1+ 2m IX
2m

.
i
l '

U= 1, 2, ..., 2m).

Moreover, as the weight function v E GSJ is even, and by (3.1), we obtain

(i = 1, 2,,,,, 2m),

Thus

(i = 1, ,..., 2m),

from which the second inequality in (3,3) easily follows, and also first
inequality, from

(i= 1, 2, ..., 2m), I

LEMMA 3.n. Let X2m.c he the closest knot to t. If we set

2m A
a~,(t) = L 2m)

i ~ I IX2m,i - t I
i#c

then

(3.4 )

a~,(t) ~ log m, (mE N), (3.5)

holds uniformly on A,

Prool Without any loss of generality, we suppose that

X 2m.c = x 2m,ti ~ t < X 2m,d+ J ~

Then, by (3.3), we have

thus t - X2m,d- I ~ X2m,d+ 1- t ~ (2m) I

2m A d-l). 2m.le
a:'(t) > L 2m,/ = L -2m,/ + L 2m,i (3.6)

i=llx2m,i-tl i~1 t-X2m,i i~d+1X2m,i-t
i#d
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Further, the function U(X) = Ix- II I is such that

X E [ - I, X 2m." I J, i= 0, I, ... ,
and

XE[X 2m."+I' I], i=O, I, ....

Then, by the generalized Markov-Stieltjes inequalities (see Lemma 1.5.3 in
[5, p. 30J and Lemmas 3.2, 3.3 in [8, p. 222J), we obtain

", I ),. r\~m.d I v(x)
~ -"'./ ~ -- dx,
'~1 1- x 2m.' • I 1- X

2m" 1 ()
, 1"11,' r VX
L, -. ~ --dx,

I _ d t I X 2"l.l - t ... \·::'11I,11 ' 1 X - f

From these inequalities, we easily get

0',;,( t) > 2v(t) log 111 + v(t) log( 1 - 12) + V(t),

where

_1"1 IV(X)-V(t)! .V(t)- d ...
• I x-I

From v E TD, we have that the function V is continuous on A, and thus

(1fIEA),

where a I' h I are two constants, independent of 111.

Further, by (3.3) we obtain

const [ 2m 1 2m I 1
O'~,(t):(--2 I . + I 2 .

I-I '~12111Ix2m,i-11 '~12I11JI-X2m,i
;¥(

By (3.1), we represent the two summations III the last inequality as
Riemann Darboux ones. Thus

* ,,:::const[f·.'..·~m.d-' dx fl dx JO'm(l) "'-1--7 --+ --+n .
- t - 1 f - X x:.

lII
.t! + I X - t

Again, by (3.1) and I E A, we have

(j~,( I) :( a 2 log 111 + b2 ,
-'

where a2 , h2 are two constants, independent of m.
Hence the lemma is proved. I
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LEMMA JIll. For the coefficients Blm.2r in (2.2) the inequalities
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(r=O,I, ...,s-I), (3.7)

hold, where K is a constant, independent of m and r.

Proof If one set g(x) = x 2r (r = 0, 1,..., s - 1) in (2.5), we obtain

1 12m A. .
B - f Or ( ) d '\' 2m.l

2m.2r = 2)' x- Hi X X - 1..- ~.
( r. - 1 i = I X 2m,;

Now, the function {'(x)=x 2
(r ')(r<s) is such that

and

yli)(X) > 0,

(-I)' },UI(X) > 0,

x<o,

x>o,

i= 0, I,... ,

i = 0, I, ... ,

v(x) ('(x) = x 2rw(x).

Then, by the generalized Markov-Stieltjes inequalities (see [8, p. 222J), we
have

2m ;. I 2m A .
L ~2m,l < f 2r ,( ) d < L 2m.l

----:;---(_ )" X H X X " ----:;---(. _ ).x- s r x-'\ r
i = HI + 2 0/ 2mj .'C2111.m + I i = In + I "' 2m)

From these inequalities, we deduce

where

1 fX2nun + I 2r
Cl. m =-(2, X w(x)dx,

r). X2m,m

and

2 A. 2m•m + 1

Pm = (2r)' x 2(,-r)
. 2m,m+ I

Thus
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Further, we have
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,,, \), I I xl,. t I - X-
2
','"+,,,,1

(2r)! a", = w(O J' -"" x 2, dx = w(O '_~o:::7"::..::,,n::.:.,...:.+...:.I_---=:-~
"m,m 21'+ I

== 2w( ~) x~;n~n: +- I '"" m 2,. I,

where ~E(X2m,m,X2m,m+I)'Moreover, by (3,2), we see

=nl

(
I )2'I 2 11+1/2 2(r-s)

(1 - X 2111,111 + 1 ) X 2m,m + 1 + 2m x 2111.111 + I

(
I )21'I __ 2 II + 1,2 __

(I ~.X 2"1,"1 + 1 ) X 2"1,"1 + 1 + 2m

(
I )2' 21'

2(1" s)
X X 2111.111 + I + 2n1 x 2m.HI + 1

=fn 1(I~X~m''''+I)!'fI2(X2m.m+I+-21)2'(1+
2

I )2'\ 2,
m mX 2m,m+ I

21' I

Hence, the lemma is proved, I

Before proceeding any further, we observe that the result of Lemma 3.111
is sufficient to prove the convergence of the formula (2.2) when g E C°(l)
and we suppose the existence of 2s - I derivatives of the function g at
point 0,

Now, we note that the functions B 2m)t) depend on B 2m ,; by (2,11), From
these relations, the equalities

Is/ B~

B ()--" (2' 2'-2)' 2m,2/+ 2; 2
2"1,2/ t - (2j)! ;:-1 J + I , t2;- 2

I ,\ / 1 B-
B, , I(t)=---- " (2j'+2i)' 2"2,,2/+

2
2;,

,"1,,1 + t(2,j' + I)! L., ' t i-
i= I

easily follow,
Thus, by (3,7) we deduce

(j = 0, I,,,,, s - I ),

(j = 0, I,,,,, s - 2),

I
B 2m)t)l,c:: K

t ""'j!m 1 + 1 '
(j = 0, I,,,,, 2s - 2), (3,8)

where K> 0 is a constant, independent on m, j, and tEA,
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4. ON THE CONVERGENCE OF RULE (2.10)

2'-2pkl(0) k

P2,-2(X)= k~O ~X ,

g =I- P2, z,

rm=g-qm'

335

where qm is the best approximation polynomial with respect to the function
g. We remark that w( g; () ) :( const w(f; (») when IE CO( I).

Under these assumptions, we may prove the following.

LEMMA 4.1. Given any fimction IE C(l), there is a constant L indepen
dent on I and mEN such that

II'here

t E /I, (4.1 )

()m= Ilr"/11 (logm+m 1)+f1mW(f;U) du+ Ilq;llllA
o u m

2, 2I qUl(0)1
+ml'\---:.;;m__

L, ., i'
i~1 ./. m

(mEN*),

(mEN),

and L1 is a closed set such that L1 c ( - I, I).

Proof Having rule <P 2m degree of exactness 4m + 2.1', we may claim that

where

II = 1<P(rm- rm(t); t)l,

JJ=I.~I A .rm(X 2m,i)-rm(t)I,
- L 2m./ x.- t

1= 1 2m.f

(4.2 )

(4.3 )

(4.4 )
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Now. we obtain
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where

11 :( 2 lir",11 W(i) + \l'(i)

X {4 II r",11 log m + IJ
I
,

rll/(x)-rll/(t) ]}-----dx ,
II'; l.m X - (

By

It

11 ! W(X) - W(t)!W(i)= dx
• 1 X- (

rll/(x)-rll/(r) I f1/1I/, 1 du+ Ilq:nIIA.
~~-....:.:.:..:- dx :( canst w(j; u) U

II'" 111/ X - ( ° m

as II' E TD implies WE CO(A), we obtain

/ 1 :( canst {llrll/ ll (log m + I) +('" w(j; u) U 1 du + Ilq;"A}-

Furthermore, because of Lemma 3.11,

12 :( canst Ilrll/lllog m + la2",)t)l.

Finally. by (3.8), we have

1 {2 II' II + 2..~ 2 q~,;I(O.)}I, :( Km '11/ L., / .
J~ 1 J. m

The combination of these inequalities proves the lemma. I
At this point. we may prove the following

THEOREM 4.1. For anyfunctionfE C,(I) n TD, there exists a subsequence
{lfJ 2"" } k F N uniformly convergent to lfJf on A.

Proo{: First we remark that from f E CJl) n TD follows

II r", II :( canst w(f; m - 1 ),

lim f1//1/ w(j; u) U 1 du = 0,
mE.lV 0

and

lim w(j; m I) log m = 0.
mEN
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Furthermore, it is well known [7] that for any function FE c(rV), (r~O),

if we denote by qm the best approximation polynomial with respect to the
function F, for any k> r there exists a constant M k such that

Ilq:;)IIA ~ Mkmk
r w(pr); m -I),

where L1 is a closed set such that L1 c ( - 1, 1).
Thus, from g E C°(l), we obtain

{
2s-2Iqli)(0)1}

m - 1 II q;" II A + L :;' i ~ const w(f; m - 1).

i~ 1 J. m

Finally, we have

lim 15/11 = 0.
mEN

(4.5 )

At this point, we introduce the set N' = {n E N* Ilx 2"., - tl '" n 1 log - 1 n}.
By N- cN'cN*, we obtain that N' is an infinite set and N'= {mk}kEN'
Then, for any sufficiently large kEN, there exists a constant H> 0,
independent off and k such that

(k~ Xi),

and the theorem is proved. I
Now, let LD(}.), (). > 0), be the class of functions fE C°(l), such that

w(f; (5) log; 15 1 = o( 1), () ~ 0 I ). Obviously, we have

and

LD(}.) =:J TD

LD().) c TD

if ;. E (0, 1],

if ;. > 1.

Note that by Lemma 4.1 and Theorem 4.1 the corollaries immediately
follows:

COROLLARY 4.1. For any function f E LD(}.), (). > 1), there exists a sui;
sequence {£2/11,/} i EN such that

(i ~ CXl).

COROLLARY 4.II. For any function fE LiPMrx, there exists a subsequence
{E2/11,/LEN such that

(j ~ CXl).
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COROLLARY 4.III. For any function fE LiPM I, we have

11£2"fll = O(n I log n), (nE N*).

COROLLARY 4.1V. For any junction fE elk I(l), we have

11£2,,/11 = O(n k log nw(f; n I)), (nEN*).

(4.7)

Furthermore, we observe that obvious changes in the proof of
Theorem 4.1 are sufficient to prove the following:

THEOREM 4.11. If the integral f/Jf exists, then, for any function
fE C,(I) (J LD( I ), there exists a subsequence { f/JmJ} kE N convergent to f/Jf in
(-I,I)-{O}.

At this point, we remark that by Lemma 3.11 the norm of f/J m is not
bounded; then the continuity of the function f is not sufficient for the con
vergence of the sequence {f/J 2m }, which besides is defined just for
mE N* c N. Yet, in some cases we have N- = N*. This is true when s = 0,
ljJ(x) == I, f1 = ±1, and t = cos( np/q), where p/q is a rational number in
(0, I), [8].

Further, it is not difficult to find a subsequence {f/J 2mJ v EN not con
vergent when the function f E Lip M (1, ((1 < I). In fact, following the example
s = 0, ljJ( x) == I, f1 = ±1, if we suppose t = cos(en), where e is an irrational
number in (0, I), we have la 2m ,.cI ~ (2m,Y -~ for a particular sequence
{m"LENcN* (see [10, p.23]).

From the proof of Theorem 4.1, we have that the term that causes dif
ficulties to the convergence of f/J 2m fis a 2m.c(t), corresponding to the closest
knot to the singularity. Now, let us omit this term and consider the
quadrature formula

f
l W(X) 2m f(x )-j"(t)

f/Jfm(f; t) =f(t) ~ dx + L A 2m.i 2m.;_
- 1 X t I~ I X 2m.i t

+ B2m.o(t)((t) _ 2t2B 2m)t) f(j)(O), (4.6)
t j~O t

that can be rewritten in the following form

f/Jt,,(f; t)=Afm(t)f(t)+ I A 2m
.i f(x 2m.J- 2"I 2B 2mit) f(j)(O),

; ~ I X 2m.i - t j ~ 0 t
i¥c

where

Aim(t)=f w~)dx-I A2m~ + Bo(t).
- I x t ;~ I X 2m.i t t

i*c
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Then, the corresponding remainder is defined by
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One can easily prove that eJ>rm has degree of exactness 0, however we may
consider eJ>rm for any mEN, and we may prove the following:

THEOREM 4.111. For any function fE C,(I) n TD, the sequence
{eJ>imf} mEN converges uniformly to eJ>f on A.

Proof Proceeding as in [4], we obtain

E* (I' )- * ( . qm(x2m.J - qm(t)
2m . ,t - E 2m 'm' t) + A 2m.c ,

X 2m.c - t

and recalling (3.4), (4.2), (4.4), we have

At this point, if we proceed as for the proof of Theorem 4.1, we may obtain

where C is a constant, independent on f and m.
This completes the proof of the theorem. I
Furthermore, by (4.8) we obtain

(4.8 )

II Ei"J II A= o(logi 1m)

IIEimfllA = O(m-~ log m)

if fE LD(ic),

if fE LipM:J.,

(ic> 1). (4.9)

(0<:J.~1). (4.10)

On the other side, we have the following:

THEOREM 4.IV. If the integral eJ>f exists, then for any function
f E C,(I) c LD( 1), the sequence {eJ>r"J} converges to eJ>f in (- 1, 1) - {O}:

Further, we point out that Theorem 4.111, Theorem 4.1V and the
relations (4.9), (4.10) also hold for the quadrature formula eJ>t: that we
may obtain from eJ>2m omitting the two terms that correspond to both
knots X 2"'.d and X 2m.d + I·

Finally, note that in the special case in which s = 0, we obtain results
established in [4].
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